计算矩阵乘积态边际分布张量¶
以下代码示例说明了如何定义张量网络状态,计算其矩阵乘积态 (MPS) 分解,然后计算 MPS 分解状态的边际分布张量。完整的代码可以在 NVIDIA/cuQuantum 存储库中找到(此处)。
头文件和错误处理¶
7#include <cstdlib>
8#include <cstdio>
9#include <cassert>
10#include <complex>
11#include <vector>
12#include <bitset>
13#include <iostream>
14
15#include <cuda_runtime.h>
16#include <cutensornet.h>
17
18
19#define HANDLE_CUDA_ERROR(x) \
20{ const auto err = x; \
21 if( err != cudaSuccess ) \
22 { printf("CUDA error %s in line %d\n", cudaGetErrorString(err), __LINE__); fflush(stdout); std::abort(); } \
23};
24
25#define HANDLE_CUTN_ERROR(x) \
26{ const auto err = x; \
27 if( err != CUTENSORNET_STATUS_SUCCESS ) \
28 { printf("cuTensorNet error %s in line %d\n", cutensornetGetErrorString(err), __LINE__); fflush(stdout); std::abort(); } \
29};
30
31
32int main()
33{
34 static_assert(sizeof(size_t) == sizeof(int64_t), "Please build this sample on a 64-bit architecture!");
35
36 constexpr std::size_t fp64size = sizeof(double);
定义张量网络状态和所需的边际分布张量¶
让我们定义一个对应于 16 量子比特量子线路的张量网络状态,并请求量子比特 0 和 1 的边际分布张量。
40 // Quantum state configuration
41 constexpr int32_t numQubits = 16;
42 const std::vector<int64_t> qubitDims(numQubits,2); // qubit dimensions
43 constexpr int32_t numMarginalModes = 2; // rank of the marginal (reduced density matrix)
44 const std::vector<int32_t> marginalModes({0,1}); // open qubits (must be in acsending order)
45 std::cout << "Quantum circuit: " << numQubits << " qubits\n";
初始化 cuTensorNet 库句柄¶
49 // Initialize the cuTensorNet library
50 HANDLE_CUDA_ERROR(cudaSetDevice(0));
51 cutensornetHandle_t cutnHandle;
52 HANDLE_CUTN_ERROR(cutensornetCreate(&cutnHandle));
53 std::cout << "Initialized cuTensorNet library on GPU 0\n";
在 GPU 上定义量子门¶
57 // Define necessary quantum gate tensors in Host memory
58 const double invsq2 = 1.0 / std::sqrt(2.0);
59 // Hadamard gate
60 const std::vector<std::complex<double>> h_gateH {{invsq2, 0.0}, {invsq2, 0.0},
61 {invsq2, 0.0}, {-invsq2, 0.0}};
62 // CX gate
63 const std::vector<std::complex<double>> h_gateCX {{1.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0},
64 {0.0, 0.0}, {1.0, 0.0}, {0.0, 0.0}, {0.0, 0.0},
65 {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {1.0, 0.0},
66 {0.0, 0.0}, {0.0, 0.0}, {1.0, 0.0}, {0.0, 0.0}};
67
68 // Copy quantum gates to Device memory
69 void *d_gateH{nullptr}, *d_gateCX{nullptr};
70 HANDLE_CUDA_ERROR(cudaMalloc(&d_gateH, 4 * (2 * fp64size)));
71 HANDLE_CUDA_ERROR(cudaMalloc(&d_gateCX, 16 * (2 * fp64size)));
72 std::cout << "Allocated quantum gate memory on GPU\n";
73 HANDLE_CUDA_ERROR(cudaMemcpy(d_gateH, h_gateH.data(), 4 * (2 * fp64size), cudaMemcpyHostToDevice));
74 HANDLE_CUDA_ERROR(cudaMemcpy(d_gateCX, h_gateCX.data(), 16 * (2 * fp64size), cudaMemcpyHostToDevice));
75 std::cout << "Copied quantum gates to GPU memory\n";
分配 MPS 张量¶
在这里,我们设置 MPS 张量的形状,并为其存储分配 GPU 内存。
79 // Determine the MPS representation and allocate buffers for the MPS tensors
80 const int64_t maxExtent = 2; // GHZ state can be exactly represented with max bond dimension of 2
81 std::vector<std::vector<int64_t>> extents;
82 std::vector<int64_t*> extentsPtr(numQubits);
83 std::vector<void*> d_mpsTensors(numQubits, nullptr);
84 for (int32_t i = 0; i < numQubits; i++) {
85 if (i == 0) { // left boundary MPS tensor
86 extents.push_back({2, maxExtent});
87 HANDLE_CUDA_ERROR(cudaMalloc(&d_mpsTensors[i], 2 * maxExtent * 2 * fp64size));
88 }
89 else if (i == numQubits-1) { // right boundary MPS tensor
90 extents.push_back({maxExtent, 2});
91 HANDLE_CUDA_ERROR(cudaMalloc(&d_mpsTensors[i], 2 * maxExtent * 2 * fp64size));
92 }
93 else { // middle MPS tensors
94 extents.push_back({maxExtent, 2, maxExtent});
95 HANDLE_CUDA_ERROR(cudaMalloc(&d_mpsTensors[i], 2 * maxExtent * maxExtent * 2 * fp64size));
96 }
97 extentsPtr[i] = extents[i].data();
98 }
在 GPU 上分配边际分布张量¶
在这里,我们分配边际分布张量,即量子比特 0 和 1 的约化密度矩阵,在 GPU 上。
102 // Allocate the specified quantum circuit reduced density matrix (marginal) in Device memory
103 void *d_rdm{nullptr};
104 std::size_t rdmDim = 1;
105 for(const auto & mode: marginalModes) rdmDim *= qubitDims[mode];
106 const std::size_t rdmSize = rdmDim * rdmDim;
107 HANDLE_CUDA_ERROR(cudaMalloc(&d_rdm, rdmSize * (2 * fp64size)));
在 GPU 上分配暂存缓冲区¶
111 // Query the free memory on Device
112 std::size_t freeSize{0}, totalSize{0};
113 HANDLE_CUDA_ERROR(cudaMemGetInfo(&freeSize, &totalSize));
114 const std::size_t scratchSize = (freeSize - (freeSize % 4096)) / 2; // use half of available memory with alignment
115 void *d_scratch{nullptr};
116 HANDLE_CUDA_ERROR(cudaMalloc(&d_scratch, scratchSize));
117 std::cout << "Allocated " << scratchSize << " bytes of scratch memory on GPU\n";
创建纯张量网络状态¶
现在,让我们为一个 16 量子比特量子线路创建一个纯张量网络状态。
121 // Create the initial quantum state
122 cutensornetState_t quantumState;
123 HANDLE_CUTN_ERROR(cutensornetCreateState(cutnHandle, CUTENSORNET_STATE_PURITY_PURE, numQubits, qubitDims.data(),
124 CUDA_C_64F, &quantumState));
125 std::cout << "Created the initial quantum state\n";
应用量子门¶
让我们通过应用相应的量子门来构建 GHZ 量子线路。
129 // Construct the final quantum circuit state (apply quantum gates) for the GHZ circuit
130 int64_t id;
131 HANDLE_CUTN_ERROR(cutensornetStateApplyTensorOperator(cutnHandle, quantumState, 1, std::vector<int32_t>{{0}}.data(),
132 d_gateH, nullptr, 1, 0, 1, &id));
133 for(int32_t i = 1; i < numQubits; ++i) {
134 HANDLE_CUTN_ERROR(cutensornetStateApplyTensorOperator(cutnHandle, quantumState, 2, std::vector<int32_t>{{i-1,i}}.data(),
135 d_gateCX, nullptr, 1, 0, 1, &id));
136 }
137 std::cout << "Applied quantum gates\n";
请求最终量子线路状态的 MPS 分解¶
在这里,我们表达了使用 MPS 分解来分解最终量子线路状态的意图。提供的 MPS 张量的形状指的是 MPS 重整化过程中的最大尺寸限制。最终 MPS 张量的实际计算形状可能更小。此处尚未进行任何计算。
141 // Specify the final target MPS representation (use default fortran strides)
142 HANDLE_CUTN_ERROR(cutensornetStateFinalizeMPS(cutnHandle, quantumState,
143 CUTENSORNET_BOUNDARY_CONDITION_OPEN, extentsPtr.data(), /*strides=*/nullptr));
144 std::cout << "Requested the final MPS factorization of the quantum circuit state\n";
配置 MPS 分解过程¶
在表达了执行最终量子线路状态的 MPS 分解的意图后,我们还可以通过重置不同的选项(例如,SVD 算法)来配置 MPS 分解过程。
148 // Optional, set up the SVD method for MPS truncation.
149 cutensornetTensorSVDAlgo_t algo = CUTENSORNET_TENSOR_SVD_ALGO_GESVDJ;
150 HANDLE_CUTN_ERROR(cutensornetStateConfigure(cutnHandle, quantumState,
151 CUTENSORNET_STATE_CONFIG_MPS_SVD_ALGO, &algo, sizeof(algo)));
152 std::cout << "Configured the MPS factorization computation\n";
准备 MPS 分解的计算¶
让我们创建一个工作区描述符并准备 MPS 分解的计算。
156 // Prepare the MPS computation and attach workspace
157 cutensornetWorkspaceDescriptor_t workDesc;
158 HANDLE_CUTN_ERROR(cutensornetCreateWorkspaceDescriptor(cutnHandle, &workDesc));
159 std::cout << "Created the workspace descriptor\n";
160 HANDLE_CUTN_ERROR(cutensornetStatePrepare(cutnHandle, quantumState, scratchSize, workDesc, 0x0));
161 std::cout << "Prepared the computation of the quantum circuit state\n";
162 double flops {0.0};
163 HANDLE_CUTN_ERROR(cutensornetStateGetInfo(cutnHandle, quantumState,
164 CUTENSORNET_STATE_INFO_FLOPS, &flops, sizeof(flops)));
165 if(flops > 0.0) {
166 std::cout << "Total flop count = " << (flops/1e9) << " GFlop\n";
167 }else if(flops < 0.0) {
168 std::cout << "ERROR: Negative Flop count!\n";
169 std::abort();
170 }
171
172 int64_t worksize {0};
173 HANDLE_CUTN_ERROR(cutensornetWorkspaceGetMemorySize(cutnHandle,
174 workDesc,
175 CUTENSORNET_WORKSIZE_PREF_RECOMMENDED,
176 CUTENSORNET_MEMSPACE_DEVICE,
177 CUTENSORNET_WORKSPACE_SCRATCH,
178 &worksize));
179 std::cout << "Scratch GPU workspace size (bytes) for MPS computation = " << worksize << std::endl;
180 if(worksize <= scratchSize) {
181 HANDLE_CUTN_ERROR(cutensornetWorkspaceSetMemory(cutnHandle, workDesc, CUTENSORNET_MEMSPACE_DEVICE,
182 CUTENSORNET_WORKSPACE_SCRATCH, d_scratch, worksize));
183 }else{
184 std::cout << "ERROR: Insufficient workspace size on Device!\n";
185 std::abort();
186 }
187 std::cout << "Set the workspace buffer for the MPS factorization computation\n";
计算 MPS 分解¶
一旦 MPS 分解过程被配置和准备好,让我们计算最终量子线路状态的 MPS 分解。
191 // Execute MPS computation
192 HANDLE_CUTN_ERROR(cutensornetStateCompute(cutnHandle, quantumState,
193 workDesc, extentsPtr.data(), /*strides=*/nullptr, d_mpsTensors.data(), 0));
194 std::cout << "Computed the MPS factorization\n";
创建边际分布对象¶
一旦量子线路构建完成,让我们创建边际分布对象,该对象将计算量子比特 0 和 1 的边际分布张量(约化密度矩阵)。
198 // Specify the desired reduced density matrix (marginal)
199 cutensornetStateMarginal_t marginal;
200 HANDLE_CUTN_ERROR(cutensornetCreateMarginal(cutnHandle, quantumState, numMarginalModes, marginalModes.data(),
201 0, nullptr, std::vector<int64_t>{{1,2,4,8}}.data(), &marginal)); // using explicit strides
202 std::cout << "Created the specified quantum circuit reduced densitry matrix (marginal)\n";
配置边际分布对象¶
现在我们可以通过设置张量网络收缩路径查找器要使用的超样本数量来配置边际分布对象。
206 // Configure the computation of the specified quantum circuit reduced density matrix (marginal)
207 const int32_t numHyperSamples = 8; // desired number of hyper samples used in the tensor network contraction path finder
208 HANDLE_CUTN_ERROR(cutensornetMarginalConfigure(cutnHandle, marginal,
209 CUTENSORNET_MARGINAL_CONFIG_NUM_HYPER_SAMPLES, &numHyperSamples, sizeof(numHyperSamples)));
210 std::cout << "Configured the specified quantum circuit reduced density matrix (marginal) computation\n";
准备边际分布张量的计算¶
让我们准备边际分布张量的计算。
214 // Prepare the specified quantum circuit reduced densitry matrix (marginal)
215 HANDLE_CUTN_ERROR(cutensornetMarginalPrepare(cutnHandle, marginal, scratchSize, workDesc, 0x0));
216 std::cout << "Prepared the specified quantum circuit reduced density matrix (marginal)\n";
217 flops = 0.0;
218 HANDLE_CUTN_ERROR(cutensornetMarginalGetInfo(cutnHandle, marginal,
219 CUTENSORNET_MARGINAL_INFO_FLOPS, &flops, sizeof(flops)));
220 std::cout << "Total flop count = " << (flops/1e9) << " GFlop\n";
221 if(flops <= 0.0) {
222 std::cout << "ERROR: Invalid Flop count!\n";
223 std::abort();
224 }
设置工作区¶
现在我们可以设置所需的工作区缓冲区。
228 // Attach the workspace buffer
229 HANDLE_CUTN_ERROR(cutensornetWorkspaceGetMemorySize(cutnHandle,
230 workDesc,
231 CUTENSORNET_WORKSIZE_PREF_RECOMMENDED,
232 CUTENSORNET_MEMSPACE_DEVICE,
233 CUTENSORNET_WORKSPACE_SCRATCH,
234 &worksize));
235 std::cout << "Required scratch GPU workspace size (bytes) for marginal computation = " << worksize << std::endl;
236 if(worksize <= scratchSize) {
237 HANDLE_CUTN_ERROR(cutensornetWorkspaceSetMemory(cutnHandle, workDesc, CUTENSORNET_MEMSPACE_DEVICE,
238 CUTENSORNET_WORKSPACE_SCRATCH, d_scratch, worksize));
239 }else{
240 std::cout << "ERROR: Insufficient workspace size on Device!\n";
241 std::abort();
242 }
243 std::cout << "Set the workspace buffer\n";
244
计算边际分布张量¶
一旦一切都设置好,我们计算请求的量子比特 0 和 1 的边际分布张量(约化密度矩阵),将其复制回主机内存,并打印出来。
247 // Compute the specified quantum circuit reduced densitry matrix (marginal)
248 HANDLE_CUTN_ERROR(cutensornetMarginalCompute(cutnHandle, marginal, nullptr, workDesc, d_rdm, 0));
249 std::cout << "Computed the specified quantum circuit reduced density matrix (marginal)\n";
250 std::vector<std::complex<double>> h_rdm(rdmSize);
251 HANDLE_CUDA_ERROR(cudaMemcpy(h_rdm.data(), d_rdm, rdmSize * (2 * fp64size), cudaMemcpyDeviceToHost));
252 std::cout << "Reduced density matrix for " << numMarginalModes << " qubits:\n";
253 for(std::size_t i = 0; i < rdmDim; ++i) {
254 for(std::size_t j = 0; j < rdmDim; ++j) {
255 std::cout << " " << h_rdm[i + j * rdmDim];
256 }
257 std::cout << std::endl;
258 }
释放资源¶
262 // Destroy the workspace descriptor
263 HANDLE_CUTN_ERROR(cutensornetDestroyWorkspaceDescriptor(workDesc));
264 std::cout << "Destroyed the workspace descriptor\n";
265
266 // Destroy the quantum circuit reduced density matrix
267 HANDLE_CUTN_ERROR(cutensornetDestroyMarginal(marginal));
268 std::cout << "Destroyed the quantum circuit state reduced density matrix (marginal)\n";
269
270 // Destroy the quantum circuit state
271 HANDLE_CUTN_ERROR(cutensornetDestroyState(quantumState));
272 std::cout << "Destroyed the quantum circuit state\n";
273
274 for (int32_t i = 0; i < numQubits; i++) {
275 HANDLE_CUDA_ERROR(cudaFree(d_mpsTensors[i]));
276 }
277 HANDLE_CUDA_ERROR(cudaFree(d_scratch));
278 HANDLE_CUDA_ERROR(cudaFree(d_rdm));
279 HANDLE_CUDA_ERROR(cudaFree(d_gateCX));
280 HANDLE_CUDA_ERROR(cudaFree(d_gateH));
281 std::cout << "Freed memory on GPU\n";
282
283 // Finalize the cuTensorNet library
284 HANDLE_CUTN_ERROR(cutensornetDestroy(cutnHandle));
285 std::cout << "Finalized the cuTensorNet library\n";
286
287 return 0;
288}