计算矩阵乘积态 (MPS) 幅值

以下代码示例说明了如何定义张量网络状态,将其分解为矩阵乘积态 (MPS),然后计算分解后的 MPS 状态的幅值切片。 完整代码可以在 NVIDIA/cuQuantum 存储库中找到 (此处)。

头文件和错误处理

 7#include <cstdlib>
 8#include <cstdio>
 9#include <cassert>
10#include <complex>
11#include <vector>
12#include <bitset>
13#include <iostream>
14
15#include <cuda_runtime.h>
16#include <cutensornet.h>
17
18
19#define HANDLE_CUDA_ERROR(x) \
20{ const auto err = x; \
21  if( err != cudaSuccess ) \
22  { printf("CUDA error %s in line %d\n", cudaGetErrorString(err), __LINE__); fflush(stdout); std::abort(); } \
23};
24
25#define HANDLE_CUTN_ERROR(x) \
26{ const auto err = x; \
27  if( err != CUTENSORNET_STATUS_SUCCESS ) \
28  { printf("cuTensorNet error %s in line %d\n", cutensornetGetErrorString(err), __LINE__); fflush(stdout); std::abort(); } \
29};
30
31
32int main()
33{
34  static_assert(sizeof(size_t) == sizeof(int64_t), "Please build this sample on a 64-bit architecture!");
35
36  constexpr std::size_t fp64size = sizeof(double);

定义张量网络状态和所需的状态幅值切片

让我们定义一个对应于 6 量子比特量子电路的张量网络状态,并请求一个状态幅值切片,其中量子比特 0 和 1 固定为值 1。

40  // Quantum state configuration
41  constexpr int32_t numQubits = 6; // number of qubits
42  const std::vector<int64_t> qubitDims(numQubits,2); // qubit dimensions
43  const std::vector<int32_t> fixedModes({0,1}); // fixed modes in the output amplitude tensor (must be in acsending order)
44  const std::vector<int64_t> fixedValues({1,1}); // values of the fixed modes in the output amplitude tensor
45  const int32_t numFixedModes = fixedModes.size(); // number of fixed modes in the output amplitude tensor
46  std::cout << "Quantum circuit: " << numQubits << " qubits\n";

初始化 cuTensorNet 库句柄

50  // Initialize the cuTensorNet library
51  HANDLE_CUDA_ERROR(cudaSetDevice(0));
52  cutensornetHandle_t cutnHandle;
53  HANDLE_CUTN_ERROR(cutensornetCreate(&cutnHandle));
54  std::cout << "Initialized cuTensorNet library on GPU 0\n";

在 GPU 上定义量子门

58  // Define necessary quantum gate tensors in Host memory
59  const double invsq2 = 1.0 / std::sqrt(2.0);
60  //  Hadamard gate
61  const std::vector<std::complex<double>> h_gateH {{invsq2, 0.0},  {invsq2, 0.0},
62                                                   {invsq2, 0.0}, {-invsq2, 0.0}};
63  //  CX gate
64  const std::vector<std::complex<double>> h_gateCX {{1.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0},
65                                                    {0.0, 0.0}, {1.0, 0.0}, {0.0, 0.0}, {0.0, 0.0},
66                                                    {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {1.0, 0.0},
67                                                    {0.0, 0.0}, {0.0, 0.0}, {1.0, 0.0}, {0.0, 0.0}};
68
69  // Copy quantum gates to Device memory
70  void *d_gateH{nullptr}, *d_gateCX{nullptr};
71  HANDLE_CUDA_ERROR(cudaMalloc(&d_gateH, 4 * (2 * fp64size)));
72  HANDLE_CUDA_ERROR(cudaMalloc(&d_gateCX, 16 * (2 * fp64size)));
73  std::cout << "Allocated quantum gate memory on GPU\n";
74  HANDLE_CUDA_ERROR(cudaMemcpy(d_gateH, h_gateH.data(), 4 * (2 * fp64size), cudaMemcpyHostToDevice));
75  HANDLE_CUDA_ERROR(cudaMemcpy(d_gateCX, h_gateCX.data(), 16 * (2 * fp64size), cudaMemcpyHostToDevice));
76  std::cout << "Copied quantum gates to GPU memory\n";

分配 MPS 张量

这里我们设置 MPS 张量的形状,并为其存储分配 GPU 内存。

80  // Determine the MPS representation and allocate buffers for the MPS tensors
81  const int64_t maxExtent = 2; // GHZ state can be exactly represented with max bond dimension of 2
82  std::vector<std::vector<int64_t>> extents;
83  std::vector<int64_t*> extentsPtr(numQubits); 
84  std::vector<void*> d_mpsTensors(numQubits, nullptr);
85  for (int32_t i = 0; i < numQubits; i++) {
86    if (i == 0) { // left boundary MPS tensor
87      extents.push_back({2, maxExtent});
88      HANDLE_CUDA_ERROR(cudaMalloc(&d_mpsTensors[i], 2 * maxExtent * 2 * fp64size));
89    }
90    else if (i == numQubits-1) { // right boundary MPS tensor
91      extents.push_back({maxExtent, 2});
92      HANDLE_CUDA_ERROR(cudaMalloc(&d_mpsTensors[i], 2 * maxExtent * 2 * fp64size));
93    }
94    else { // middle MPS tensors
95      extents.push_back({maxExtent, 2, maxExtent});
96      HANDLE_CUDA_ERROR(cudaMalloc(&d_mpsTensors[i], 2 * maxExtent * maxExtent * 2 * fp64size));
97    }
98    extentsPtr[i] = extents[i].data();
99  }

在 GPU 上分配幅值切片张量

这里我们为请求的幅值切片张量分配 GPU 内存。

103  // Allocate Device memory for the specified slice of the quantum circuit amplitudes tensor
104  void *d_amp{nullptr};
105  std::size_t ampSize = 1;
106  for(const auto & qubitDim: qubitDims) ampSize *= qubitDim; // all state modes (full size)
107  for(const auto & fixedMode: fixedModes) ampSize /= qubitDims[fixedMode]; // fixed state modes reduce the slice size
108  HANDLE_CUDA_ERROR(cudaMalloc(&d_amp, ampSize * (2 * fp64size)));
109  std::cout << "Allocated memory for the specified slice of the quantum circuit amplitude tensor of size "
110            << ampSize << " elements\n";

在 GPU 上分配暂存缓冲区

114  // Query the free memory on Device
115  std::size_t freeSize{0}, totalSize{0};
116  HANDLE_CUDA_ERROR(cudaMemGetInfo(&freeSize, &totalSize));
117  const std::size_t scratchSize = (freeSize - (freeSize % 4096)) / 2; // use half of available memory with alignment
118  void *d_scratch{nullptr};
119  HANDLE_CUDA_ERROR(cudaMalloc(&d_scratch, scratchSize));
120  std::cout << "Allocated " << scratchSize << " bytes of scratch memory on GPU\n";

创建纯张量网络状态

现在让我们为 6 量子比特量子电路创建一个纯张量网络状态。

124  // Create the initial quantum state
125  cutensornetState_t quantumState;
126  HANDLE_CUTN_ERROR(cutensornetCreateState(cutnHandle, CUTENSORNET_STATE_PURITY_PURE, numQubits, qubitDims.data(),
127                    CUDA_C_64F, &quantumState));
128  std::cout << "Created the initial quantum state\n";

应用量子门

让我们通过应用相应的量子门来构建 GHZ 量子电路。

132  // Construct the final quantum circuit state (apply quantum gates) for the GHZ circuit
133  int64_t id;
134  HANDLE_CUTN_ERROR(cutensornetStateApplyTensorOperator(cutnHandle, quantumState, 1, std::vector<int32_t>{{0}}.data(),
135                    d_gateH, nullptr, 1, 0, 1, &id));
136  for(int32_t i = 1; i < numQubits; ++i) {
137    HANDLE_CUTN_ERROR(cutensornetStateApplyTensorOperator(cutnHandle, quantumState, 2, std::vector<int32_t>{{i-1,i}}.data(),
138                      d_gateCX, nullptr, 1, 0, 1, &id));
139  }
140  std::cout << "Applied quantum gates\n";

请求最终量子电路状态的 MPS 分解

这里我们表达了使用 MPS 分解来分解最终量子电路状态的意图。 所提供的 MPS 张量的形状指的是 MPS 重整化过程中的最大尺寸限制。 最终 MPS 张量的实际计算形状可能更小。 这里尚未进行任何计算。

144  // Specify the final target MPS representation (use default fortran strides)
145  HANDLE_CUTN_ERROR(cutensornetStateFinalizeMPS(cutnHandle, quantumState, 
146                    CUTENSORNET_BOUNDARY_CONDITION_OPEN, extentsPtr.data(), /*strides=*/nullptr));
147  std::cout << "Requested the final MPS factorization of the quantum circuit state\n";

配置 MPS 分解过程

在表达了执行最终量子电路状态的 MPS 分解的意图之后,我们还可以通过重置不同的选项(例如 SVD 算法)来配置 MPS 分解过程。

151  // Optional, set up the SVD method for MPS truncation.
152  cutensornetTensorSVDAlgo_t algo = CUTENSORNET_TENSOR_SVD_ALGO_GESVDJ; 
153  HANDLE_CUTN_ERROR(cutensornetStateConfigure(cutnHandle, quantumState, 
154                    CUTENSORNET_STATE_CONFIG_MPS_SVD_ALGO, &algo, sizeof(algo)));
155  std::cout << "Configured the MPS factorization computation\n";

准备 MPS 分解的计算

让我们创建一个工作区描述符并准备 MPS 分解的计算。

159  // Prepare the MPS computation and attach workspace
160  cutensornetWorkspaceDescriptor_t workDesc;
161  HANDLE_CUTN_ERROR(cutensornetCreateWorkspaceDescriptor(cutnHandle, &workDesc));
162  std::cout << "Created the workspace descriptor\n";
163  HANDLE_CUTN_ERROR(cutensornetStatePrepare(cutnHandle, quantumState, scratchSize, workDesc, 0x0));
164  std::cout << "Prepared the computation of the quantum circuit state\n";
165  double flops {0.0};
166  HANDLE_CUTN_ERROR(cutensornetStateGetInfo(cutnHandle, quantumState,
167                    CUTENSORNET_STATE_INFO_FLOPS, &flops, sizeof(flops)));
168  if(flops > 0.0) {
169    std::cout << "Total flop count = " << (flops/1e9) << " GFlop\n";
170  }else if(flops < 0.0) {
171    std::cout << "ERROR: Negative Flop count!\n";
172    std::abort();
173  }
174
175  int64_t worksize {0};
176  HANDLE_CUTN_ERROR(cutensornetWorkspaceGetMemorySize(cutnHandle,
177                                                      workDesc,
178                                                      CUTENSORNET_WORKSIZE_PREF_RECOMMENDED,
179                                                      CUTENSORNET_MEMSPACE_DEVICE,
180                                                      CUTENSORNET_WORKSPACE_SCRATCH,
181                                                      &worksize));
182  std::cout << "Scratch GPU workspace size (bytes) for MPS computation = " << worksize << std::endl;
183  if(worksize <= scratchSize) {
184    HANDLE_CUTN_ERROR(cutensornetWorkspaceSetMemory(cutnHandle, workDesc, CUTENSORNET_MEMSPACE_DEVICE,
185                      CUTENSORNET_WORKSPACE_SCRATCH, d_scratch, worksize));
186  }else{
187    std::cout << "ERROR: Insufficient workspace size on Device!\n";
188    std::abort();
189  }
190  std::cout << "Set the workspace buffer for the MPS factorization computation\n";

计算 MPS 分解

一旦 MPS 分解过程已配置和准备就绪,让我们计算最终量子电路状态的 MPS 分解。

194  // Execute MPS computation
195  HANDLE_CUTN_ERROR(cutensornetStateCompute(cutnHandle, quantumState, 
196                    workDesc, extentsPtr.data(), /*strides=*/nullptr, d_mpsTensors.data(), 0));
197  std::cout << "Computed the MPS factorization\n";

创建状态幅值访问器

一旦计算出最终量子电路状态的分解 MPS 表示,让我们创建幅值访问器对象,它将计算请求的状态幅值切片。

201  // Specify the quantum circuit amplitudes accessor
202  cutensornetStateAccessor_t accessor;
203  HANDLE_CUTN_ERROR(cutensornetCreateAccessor(cutnHandle, quantumState, numFixedModes, fixedModes.data(),
204                    nullptr, &accessor)); // using default strides
205  std::cout << "Created the specified quantum circuit amplitudes accessor\n";

配置状态幅值访问器

现在我们可以通过设置张量网络收缩路径查找器要使用的超样本数量来配置状态幅值访问器对象。

209  // Configure the computation of the slice of the specified quantum circuit amplitudes tensor
210  const int32_t numHyperSamples = 8; // desired number of hyper samples used in the tensor network contraction path finder
211  HANDLE_CUTN_ERROR(cutensornetAccessorConfigure(cutnHandle, accessor,
212                    CUTENSORNET_ACCESSOR_CONFIG_NUM_HYPER_SAMPLES, &numHyperSamples, sizeof(numHyperSamples)));

准备状态幅值切片张量的计算

让我们准备状态幅值切片张量的计算。

216  // Prepare the computation of the specified slice of the quantum circuit amplitudes tensor
217  HANDLE_CUTN_ERROR(cutensornetAccessorPrepare(cutnHandle, accessor, scratchSize, workDesc, 0x0));
218  std::cout << "Prepared the computation of the specified slice of the quantum circuit amplitudes tensor\n";
219  flops = 0.0;
220  HANDLE_CUTN_ERROR(cutensornetAccessorGetInfo(cutnHandle, accessor,
221                    CUTENSORNET_ACCESSOR_INFO_FLOPS, &flops, sizeof(flops)));
222  std::cout << "Total flop count = " << (flops/1e9) << " GFlop\n";
223  if(flops <= 0.0) {
224    std::cout << "ERROR: Invalid Flop count!\n";
225    std::abort();
226  }

设置工作区

现在我们可以设置所需的工作区缓冲区。

230  // Attach the workspace buffer
231  HANDLE_CUTN_ERROR(cutensornetWorkspaceGetMemorySize(cutnHandle,
232                                                      workDesc,
233                                                      CUTENSORNET_WORKSIZE_PREF_RECOMMENDED,
234                                                      CUTENSORNET_MEMSPACE_DEVICE,
235                                                      CUTENSORNET_WORKSPACE_SCRATCH,
236                                                      &worksize));
237  std::cout << "Required scratch GPU workspace size (bytes) = " << worksize << std::endl;
238  if(worksize <= scratchSize) {
239    HANDLE_CUTN_ERROR(cutensornetWorkspaceSetMemory(cutnHandle, workDesc, CUTENSORNET_MEMSPACE_DEVICE,
240                      CUTENSORNET_WORKSPACE_SCRATCH, d_scratch, worksize));
241  }else{
242    std::cout << "ERROR: Insufficient workspace size on Device!\n";
243    std::abort();
244  }
245  std::cout << "Set the workspace buffer\n";

计算指定的状态幅值切片

一旦一切都设置好,我们计算请求的状态幅值切片,将其复制回主机内存,并打印出来。

249  // Compute the specified slice of the quantum circuit amplitudes tensor
250  std::complex<double> stateNorm2{0.0,0.0};
251  HANDLE_CUTN_ERROR(cutensornetAccessorCompute(cutnHandle, accessor, fixedValues.data(),
252                    workDesc, d_amp, static_cast<void*>(&stateNorm2), 0x0));
253  std::cout << "Computed the specified slice of the quantum circuit amplitudes tensor\n";
254  std::vector<std::complex<double>> h_amp(ampSize);
255  HANDLE_CUDA_ERROR(cudaMemcpy(h_amp.data(), d_amp, ampSize * (2 * fp64size), cudaMemcpyDeviceToHost));
256  std::cout << "Amplitudes slice for " << (numQubits - numFixedModes) << " qubits:\n";
257  for(std::size_t i = 0; i < ampSize; ++i) {
258    std::cout << " " << h_amp[i] << std::endl;
259  }
260  std::cout << "Squared 2-norm of the state = (" << stateNorm2.real() << ", " << stateNorm2.imag() << ")\n";

释放资源

264  // Destroy the workspace descriptor
265  HANDLE_CUTN_ERROR(cutensornetDestroyWorkspaceDescriptor(workDesc));
266  std::cout << "Destroyed the workspace descriptor\n";
267
268  // Destroy the quantum circuit amplitudes accessor
269  HANDLE_CUTN_ERROR(cutensornetDestroyAccessor(accessor));
270  std::cout << "Destroyed the quantum circuit amplitudes accessor\n";
271
272  // Destroy the quantum circuit state
273  HANDLE_CUTN_ERROR(cutensornetDestroyState(quantumState));
274  std::cout << "Destroyed the quantum circuit state\n";
275
276  for (int32_t i = 0; i < numQubits; i++) {
277    HANDLE_CUDA_ERROR(cudaFree(d_mpsTensors[i]));
278  }
279  HANDLE_CUDA_ERROR(cudaFree(d_scratch));
280  HANDLE_CUDA_ERROR(cudaFree(d_amp));
281  HANDLE_CUDA_ERROR(cudaFree(d_gateCX));
282  HANDLE_CUDA_ERROR(cudaFree(d_gateH));
283  std::cout << "Freed memory on GPU\n";
284
285  // Finalize the cuTensorNet library
286  HANDLE_CUTN_ERROR(cutensornetDestroy(cutnHandle));
287  std::cout << "Finalized the cuTensorNet library\n";
288
289  return 0;
290}