MLRecogNet 与 TAO Deploy
为了生成优化的 TensorRT 引擎,MLRecogNet .onnx
文件(使用 tao export
生成)被作为 tao-deploy
的输入。目前,MLRecogNet 支持 FP32、FP16 和 INT8 数据类型。
有关训练 MLRecogNet 模型的更多信息,请参阅 MLRecogNet 训练文档。
以下是一个示例规范 $TRT_GEN_SPEC
,用于从导出的 MLRecogNet onnx 模型生成 TensorRT 引擎。
trt_config
trt_config
参数提供与 TensorRT 生成相关的选项。
results_dir: /path/to/results/dir
dataset:
val_dataset:
reference: /path/to/reference/set
query: /path/to/query/set
pixel_mean: [0.485, 0.456, 0.406]
pixel_std: [0.226, 0.226, 0.226]
model:
input_channel: 3
input_width: 224
input_height: 224
gen_trt_engine:
gpu_id: 0
onnx_file: /path/to/exported/onnx/file
trt_engine: /path/to/trt/engine/to/generate
tensorrt:
data_type: int8
workspace_size: 1024
min_batch_size: 1
opt_batch_size: 10
max_batch_size: 10
calibration:
cal_cache_file: /path/to/calibration/cache/file/to/generate
cal_batch_size: 16
cal_batches: 100
cal_image_dir:
- /path/to/calibration/image/folder
参数 | 数据类型 | 默认值 | 描述 | 支持的值 |
data_type |
字符串 | FP32 | 用于 TensorRT 引擎的精度 | FP32/FP16/INT8 |
workspace_size |
无符号整数 | 1024 | TensorRT 引擎的最大工作区大小 | >1024 |
min_batch_size |
无符号整数 | 1 | 优化配置文件形状的最小批次大小 | >0 |
opt_batch_size |
无符号整数 | 1 | 优化配置文件形状的最佳批次大小 | >0 |
max_batch_size |
无符号整数 | 1 | 优化配置文件形状的最大批次大小 | >0 |
calibration |
字典配置 | 无 | INT8 校准的配置 |
校准配置
参数 | 数据类型 | 默认值 | 描述 | 支持的值 |
cal_cache_file |
字符串 | 无 | 校准缓存文件的路径。如果此路径下没有校准缓存文件,则会根据其他 calibration 配置参数生成缓存文件。 |
|
cal_batch_size |
无符号整数 | 1 | 校准数据集的批次大小 | >0 |
cal_batches |
无符号整数 | 1 | 用于校准的批次数量。总共有 cal_batches`x:code:`cal_batch_size 张校准图像被使用。 |
>0 |
cal_image_dir |
字符串 | 无 | 包含校准图像的目录 |
使用以下命令运行 MLRecogNet 引擎生成
tao deploy ml_recog gen_trt_engine -e /path/to/spec.yaml \
gen_trt_engine.onnx_file=/path/to/onnx/file \
gen_trt_engine.trt_engine=/path/to/engine/file \
gen_trt_engine.tensorrt.data_type=<data_type>
必需参数
-e, --experiment_spec
:实验规范文件,用于设置 TensorRT 引擎生成。这应与导出规范文件相同。gen_trt_engine.onnx_file
:要转换的.onnx
模型。gen_trt_engine.trt_engine
:生成引擎将存储的路径。gen_trt_engine.tensorrt.data_type
:MLRecogNet 支持 FP32、FP16 和 INT8 TensorRT 引擎生成。使用 INT8 时,您必须提供校准数据集或校准缓存文件。
示例用法
以下是使用 gen_trt_engine
命令生成 FP16 TensorRT 引擎的示例
tao model metric_learning_recognition gen_trt_engine -e $TRT_GEN_SPEC
gen_trt_engine.onnx_file=$ONNX_FILE \
gen_trt_engine.trt_engine=$ENGINE_FILE \
gen_trt_engine.tensorrt.data_type=FP16
以下是输出 $RESULTS_DIR/status.json
的示例
{"date": "6/22/2023", "time": "18:17:11", "status": "STARTED", "verbosity": "INFO", "message": "Starting ml_recog gen_trt_engine."}
{"date": "6/22/2023", "time": "18:17:30", "status": "SUCCESS", "verbosity": "INFO", "message": "Gen_trt_engine finished successfully."}
输出日志示例如下所示
Starting ml_recog gen_trt_engine.
[06/22/2023-18:17:12] [TRT] [I] [MemUsageChange] Init CUDA: CPU +318, GPU +0, now: CPU 356, GPU 1003 (MiB)
[06/22/2023-18:17:14] [TRT] [I] [MemUsageChange] Init builder kernel library: CPU +443, GPU +116, now: CPU 853, GPU 1119 (MiB)
[06/22/2023-18:17:14] [TRT] [W] CUDA lazy loading is not enabled. Enabling it can significantly reduce device memory usage. See `CUDA_MODULE_LOADING` in https://docs.nvda.net.cn/cuda/cuda-c-programming-guide/index.html#env-vars
Parsing ONNX model
[06/22/2023-18:17:14] [TRT] [W] The NetworkDefinitionCreationFlag::kEXPLICIT_PRECISION flag has been deprecated and has no effect. Please do not use this flag when creating the network.
[06/22/2023-18:17:15] [TRT] [W] onnx2trt_utils.cpp:377: Your ONNX model has been generated with INT64 weights, while TensorRT does not natively support INT64. Attempting to cast down to INT32.
Network Description
Input 'input' with shape (-1, 3, 224, 224) and dtype DataType.FLOAT
Output 'fc_pred' with shape (-1, 256) and dtype DataType.FLOAT
dynamic batch size handling
TensorRT engine build configurations:
OptimizationProfile:
"input": (1, 3, 224, 224), (10, 3, 224, 224), (10, 3, 224, 224)
BuilderFlag.TF32
Note: max representabile value is 2,147,483,648 bytes or 2GB.
MemoryPoolType.WORKSPACE = 1073741824 bytes
MemoryPoolType.DLA_MANAGED_SRAM = 0 bytes
MemoryPoolType.DLA_LOCAL_DRAM = 1073741824 bytes
MemoryPoolType.DLA_GLOBAL_DRAM = 536870912 bytes
Tactic Sources = 31
[06/22/2023-18:17:17] [TRT] [I] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +854, GPU +362, now: CPU 1800, GPU 1481 (MiB)
[06/22/2023-18:17:17] [TRT] [I] [MemUsageChange] Init cuDNN: CPU +126, GPU +58, now: CPU 1926, GPU 1539 (MiB)
[06/22/2023-18:17:17] [TRT] [I] Local timing cache in use. Profiling results in this builder pass will not be stored.
[06/22/2023-18:17:22] [TRT] [I] Some tactics do not have sufficient workspace memory to run. Increasing workspace size will enable more tactics, please check verbose output for requested sizes.
[06/22/2023-18:17:30] [TRT] [I] Total Activation Memory: 1565556736
[06/22/2023-18:17:30] [TRT] [I] Detected 1 inputs and 1 output network tensors.
[06/22/2023-18:17:30] [TRT] [I] Total Host Persistent Memory: 132192
[06/22/2023-18:17:30] [TRT] [I] Total Device Persistent Memory: 140288
[06/22/2023-18:17:30] [TRT] [I] Total Scratch Memory: 134217728
[06/22/2023-18:17:30] [TRT] [I] [MemUsageStats] Peak memory usage of TRT CPU/GPU memory allocators: CPU 9 MiB, GPU 658 MiB
[06/22/2023-18:17:30] [TRT] [I] [BlockAssignment] Started assigning block shifts. This will take 91 steps to complete.
[06/22/2023-18:17:30] [TRT] [I] [BlockAssignment] Algorithm ShiftNTopDown took 1.66392ms to assign 5 blocks to 91 nodes requiring 184394240 bytes.
[06/22/2023-18:17:30] [TRT] [I] Total Activation Memory: 184394240
[06/22/2023-18:17:30] [TRT] [I] [MemUsageChange] Init cuDNN: CPU +0, GPU +10, now: CPU 2491, GPU 1889 (MiB)
[06/22/2023-18:17:30] [TRT] [I] [MemUsageChange] TensorRT-managed allocation in building engine: CPU +0, GPU +101, now: CPU 0, GPU 101 (MiB)
Export finished successfully.
Gen_trt_engine finished successfully.
与 TAO 评估规范文件相同的规范文件。以下是一个示例规范文件 $EVAL_SPEC
results_dir: /path/to/output_dir
evaluate:
trt_engine: /path/to/generated/trt_engine
batch_size: 8
topk: 5
dataset:
val_dataset:
reference: /path/to/reference/set
query: /path/to/query/set
使用以下命令运行 Deformable DETR 引擎评估
tao deploy ml_recog evaluate -e /path/to/spec.yaml \
evaluate.trt_engine=/path/to/engine/file \
results_dir=/path/to/outputs
必需参数
-e, --experiment_spec
:用于评估的实验规范文件。这应与tao evaluate
规范文件相同。evaluate.trt_engine
:要运行评估的引擎文件results_dir
:将存储评估结果的目录。如果未提供,结果将存储在evaluate.results_dir
中。因此,至少需要其中一个 results_dir。
示例用法
在以下示例中,evaluate
命令用于使用 TensorRT 引擎运行评估
tao deploy ml_recog evaluate -e $EVAL_SPEC
evaluate.trt_engine=$ENGINE_FILE \
results_dir=$RESULTS_DIR
以下是输出 $RESULTS_DIR/status.json
的示例
{"date": "3/30/2023", "time": "6:7:14", "status": "STARTED", "verbosity": "INFO", "message": "Starting ml_recog evaluation."}
{"date": "3/30/2023", "time": "6:7:24", "status": "SUCCESS", "verbosity": "INFO", "message": "Evaluation finished successfully."}
输出日志示例如下所示
Starting ml_recog evaluation.
[06/22/2023-20:41:53] [TRT] [W] CUDA lazy loading is not enabled. Enabling it can significantly reduce device memory usage. See `CUDA_MODULE_LOADING` in https://docs.nvda.net.cn/cuda/cuda-c-programming-guide/index.html#env-vars
[06/22/2023-20:41:53] [TRT] [W] The getMaxBatchSize() function should not be used with an engine built from a network created with NetworkDefinitionCreationFlag::kEXPLICIT_BATCH flag. This function will always return 1.
[06/22/2023-20:41:53] [TRT] [W] CUDA lazy loading is not enabled. Enabling it can significantly reduce device memory usage. See `CUDA_MODULE_LOADING` in https://docs.nvda.net.cn/cuda/cuda-c-programming-guide/index.html#env-vars
Loading gallery dataset...
...
Top 1 scores: 0.9958333333333333
Top 5 scores: 1.0
Confusion Matrix
[[ 34 0 0 0 0]
[ 0 106 0 0 0]
[ 0 0 29 0 0]
[ 0 0 0 31 0]
[ 0 0 0 1 47]]
Classification Report
precision recall f1-score support
c000001 1.00 1.00 1.00 34
c000002 1.00 1.00 1.00 106
c000003 1.00 1.00 1.00 29
c000004 0.97 1.00 0.98 31
c000005 1.00 0.98 0.99 48
accuracy 1.00 248
macro avg 0.99 1.00 0.99 248
weighted avg 1.00 1.00 1.00 248
Finished evaluation.
Evaluation finished successfully.
与 TAO 推理规范文件相同的规范文件。示例规范文件 $INFERENCE_SPEC
results_dir: "/path/to/output_dir"
model:
input_channels: 3
input_width: 224
input_height: 224
inference:
trt_engine: "/path/to/generated/trt_engine"
batch_size: 10
inference_input_type: classification_folder
topk: 5
dataset:
val_dataset:
reference: "/path/to/reference/set"
query: ""
使用以下命令运行 MLRecogNet 引擎推理
tao deploy ml_recog inference -e /path/to/spec.yaml \
inference.trt_engine=/path/to/engine/file \
results_dir=/path/to/outputs
必需参数
-e, --experiment_spec
:用于推理的实验规范文件。这应与tao inference
规范文件相同。inference.trt_engine
:要运行推理的引擎文件。results_dir
:将存储推理结果的目录。
示例用法
在以下示例中,inference
命令用于使用 TensorRT 引擎运行推理
tao deploy ml_recog inference -e $INFERENCE_SPEC
inference.trt_engine=$ENGINE_FILE \
results_dir=$RESULTS_DIR
JSON 格式的结果将存储在 $RESULTS_DIR/trt_inference
下。
以下是输出 $RESULTS_DIR/status.json
的示例
{"date": "6/22/2023", "time": "20:46:38", "status": "STARTED", "verbosity": "INFO", "message": "Starting ml_recog inference."}
{"date": "6/22/2023", "time": "20:46:53", "status": "SUCCESS", "verbosity": "INFO", "message": "Inference finished successfully."}
输出日志示例如下所示
Starting ml_recog inference.
[06/22/2023-20:46:39] [TRT] [W] CUDA lazy loading is not enabled. Enabling it can significantly reduce device memory usage. See `CUDA_MODULE_LOADING` in https://docs.nvda.net.cn/cuda/cuda-c-programming-guide/index.html#env-vars
[06/22/2023-20:46:39] [TRT] [W] The getMaxBatchSize() function should not be used with an engine built from a network created with NetworkDefinitionCreationFlag::kEXPLICIT_BATCH flag. This function will always return 1.
[06/22/2023-20:46:39] [TRT] [W] CUDA lazy loading is not enabled. Enabling it can significantly reduce device memory usage. See `CUDA_MODULE_LOADING` in https://docs.nvda.net.cn/cuda/cuda-c-programming-guide/index.html#env-vars
Loading gallery dataset...
...
Finished inference.
Inference finished successfully.