针孔相机模型描述了一种相机,它通过透视变换将场景 3D 点投影到图像平面上。它可以用以下公式描述:
\begin{align*} s \mathsf{p} &= \mathsf{K} [ \mathsf{R} | \mathsf{t} ] \mathsf{P} \end{align*}
或者
\begin{align*} s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} &= \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \\ (x_d,y_d) &= L(\tilde{x},\tilde{y}) \end{align*}
其中
针孔相机模型 |