跳到内容

离散噪声 schedules

DiscreteCosineNoiseSchedule

基类:DiscreteNoiseSchedule

余弦离散噪声 schedule。

源代码位于 bionemo/moco/schedules/noise/discrete_noise_schedules.py
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
class DiscreteCosineNoiseSchedule(DiscreteNoiseSchedule):
    """A cosine discrete noise schedule."""

    def __init__(self, nsteps: int, nu: Float = 1.0, s: Float = 0.008):
        """Initialize the CosineNoiseSchedule.

        Args:
            nsteps (int): Number of discrete steps.
            nu (Optional[Float]): Hyperparameter for the cosine schedule exponent (default is 1.0).
            s (Optional[Float]): Hyperparameter for the cosine schedule shift (default is 0.008).
        """
        super().__init__(nsteps=nsteps, direction=TimeDirection.DIFFUSION)
        self.nu = nu
        self.s = s

    def _generate_schedule(self, nsteps: Optional[int] = None, device: Union[str, torch.device] = "cpu") -> Tensor:
        """Generate the cosine noise schedule.

        Args:
            nsteps (Optional[int]): Number of time steps. If None, uses the value from initialization.
            device (Optional[str]): Device to place the schedule on (default is "cpu").
        """
        if nsteps is None:
            nsteps = self.nsteps
        steps = (
            nsteps + 1
        )  #! matches OpenAI code https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py#L62
        x = torch.linspace(0, nsteps, steps, device=device)
        alphas_cumprod = torch.cos(((x / nsteps) ** self.nu + self.s) / (1 + self.s) * torch.pi * 0.5) ** 2
        alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
        betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
        betas = torch.clip(betas, 0.001, 0.999)
        return 1 - betas

    def _clip_noise_schedule(self, alphas2: Tensor, clip_value: Float = 0.001) -> Tensor:
        """For a noise schedule given by alpha^2, this clips alpha_t / alpha_t-1. This may help improve stability during sampling.

        Args:
            alphas2 (Tensor): The noise schedule given by alpha^2.
            clip_value (Optional[Float]): The minimum value for alpha_t / alpha_t-1 (default is 0.001).

        Returns:
            Tensor: The clipped noise schedule.
        """
        alphas2 = torch.cat([torch.ones(1, device=alphas2.device), alphas2], dim=0)

        alphas_step = alphas2[1:] / alphas2[:-1]

        alphas_step = torch.clamp(alphas_step, min=clip_value, max=1.0)
        alphas2 = torch.cumprod(alphas_step, dim=0)

        return alphas2

__init__(nsteps, nu=1.0, s=0.008)

初始化 CosineNoiseSchedule。

参数

名称 类型 描述 默认值
nsteps int

离散步数。

必需
nu Optional[Float]

余弦 schedule 指数的超参数(默认为 1.0)。

1.0
s Optional[Float]

余弦 schedule 偏移的超参数(默认为 0.008)。

0.008
源代码位于 bionemo/moco/schedules/noise/discrete_noise_schedules.py
 97
 98
 99
100
101
102
103
104
105
106
107
def __init__(self, nsteps: int, nu: Float = 1.0, s: Float = 0.008):
    """Initialize the CosineNoiseSchedule.

    Args:
        nsteps (int): Number of discrete steps.
        nu (Optional[Float]): Hyperparameter for the cosine schedule exponent (default is 1.0).
        s (Optional[Float]): Hyperparameter for the cosine schedule shift (default is 0.008).
    """
    super().__init__(nsteps=nsteps, direction=TimeDirection.DIFFUSION)
    self.nu = nu
    self.s = s

DiscreteLinearNoiseSchedule

基类:DiscreteNoiseSchedule

线性离散噪声 schedule。

源代码位于 bionemo/moco/schedules/noise/discrete_noise_schedules.py
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
class DiscreteLinearNoiseSchedule(DiscreteNoiseSchedule):
    """A linear discrete noise schedule."""

    def __init__(self, nsteps: int, beta_start: Float = 1e-4, beta_end: Float = 0.02):
        """Initialize the CosineNoiseSchedule.

        Args:
            nsteps (Optional[int]): Number of time steps. If None, uses the value from initialization.
            beta_start (Optional[int]): starting beta value. Defaults to 1e-4.
            beta_end (Optional[int]): end beta value. Defaults to 0.02.
        """
        super().__init__(nsteps=nsteps, direction=TimeDirection.DIFFUSION)
        self.beta_start = beta_start
        self.beta_end = beta_end

    def _generate_schedule(self, nsteps: Optional[int] = None, device: Union[str, torch.device] = "cpu") -> Tensor:
        """Generate the cosine noise schedule.

        Args:
            nsteps (Optional[int]): Number of time steps. If None, uses the value from initialization.
            device (Optional[str]): Device to place the schedule on (default is "cpu").
        """
        if nsteps is None:
            nsteps = self.nsteps
        betas = torch.linspace(self.beta_start, self.beta_end, nsteps, dtype=torch.float32, device=device)
        return 1 - betas

__init__(nsteps, beta_start=0.0001, beta_end=0.02)

初始化 CosineNoiseSchedule。

参数

名称 类型 描述 默认值
nsteps Optional[int]

时间步数。如果为 None,则使用初始化时的值。

必需
beta_start Optional[int]

起始 beta 值。默认为 1e-4。

0.0001
beta_end Optional[int]

结束 beta 值。默认为 0.02。

0.02
源代码位于 bionemo/moco/schedules/noise/discrete_noise_schedules.py
151
152
153
154
155
156
157
158
159
160
161
def __init__(self, nsteps: int, beta_start: Float = 1e-4, beta_end: Float = 0.02):
    """Initialize the CosineNoiseSchedule.

    Args:
        nsteps (Optional[int]): Number of time steps. If None, uses the value from initialization.
        beta_start (Optional[int]): starting beta value. Defaults to 1e-4.
        beta_end (Optional[int]): end beta value. Defaults to 0.02.
    """
    super().__init__(nsteps=nsteps, direction=TimeDirection.DIFFUSION)
    self.beta_start = beta_start
    self.beta_end = beta_end

DiscreteNoiseSchedule

基类:ABC

离散噪声 schedules 的基类。

源代码位于 bionemo/moco/schedules/noise/discrete_noise_schedules.py
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
class DiscreteNoiseSchedule(ABC):
    """A base class for discrete noise schedules."""

    def __init__(self, nsteps: int, direction: TimeDirection):
        """Initialize the DiscreteNoiseSchedule.

        Args:
           nsteps (int): number of discrete steps.
           direction (TimeDirection): required this defines in which direction the scheduler was built
        """
        self.nsteps = nsteps
        self.direction = string_to_enum(direction, TimeDirection)

    def generate_schedule(
        self,
        nsteps: Optional[int] = None,
        device: Union[str, torch.device] = "cpu",
        synchronize: Optional[TimeDirection] = None,
    ) -> Tensor:
        """Generate the noise schedule as a tensor.

        Args:
            nsteps (Optional[int]): Number of time steps. If None, uses the value from initialization.
            device (Optional[str]): Device to place the schedule on (default is "cpu").
            synchronize (Optional[str]): TimeDirection to synchronize the schedule with. If the schedule is defined with a different direction,
                this parameter allows to flip the direction to match the specified one (default is None).
        """
        schedule = self._generate_schedule(nsteps, device)
        if synchronize and self.direction != string_to_enum(synchronize, TimeDirection):
            return torch.flip(schedule, dims=[0])
        else:
            return schedule

    @abstractmethod
    def _generate_schedule(self, nsteps: Optional[int] = None, device: Union[str, torch.device] = "cpu") -> Tensor:
        """Generate the noise schedule tensor.

        Args:
            nsteps (Optional[int]): Number of time steps. If None, uses the value from initialization.
            device (Optional[str]): Device to place the schedule on (default is "cpu").
        """
        pass

    def calculate_derivative(
        self,
        nsteps: Optional[int] = None,
        device: Union[str, torch.device] = "cpu",
        synchronize: Optional[TimeDirection] = None,
    ) -> Tensor:
        """Calculate the time derivative of the schedule.

        Args:
            nsteps (Optional[int]): Number of time steps. If None, uses the value from initialization.
            device (Optional[str]): Device to place the schedule on (default is "cpu").
            synchronize (Optional[str]): TimeDirection to synchronize the schedule with. If the schedule is defined with a different direction,
                this parameter allows to flip the direction to match the specified one (default is None).

        Returns:
            Tensor: A tensor representing the time derivative of the schedule.

        Raises:
            NotImplementedError: If the derivative calculation is not implemented for this schedule.
        """
        raise NotImplementedError("Derivative calculation is not implemented for this schedule.")

__init__(nsteps, direction)

初始化 DiscreteNoiseSchedule。

参数

名称 类型 描述 默认值
nsteps int

离散步数。

必需
direction TimeDirection

必需,这定义了构建 scheduler 的方向

必需
源代码位于 bionemo/moco/schedules/noise/discrete_noise_schedules.py
31
32
33
34
35
36
37
38
39
def __init__(self, nsteps: int, direction: TimeDirection):
    """Initialize the DiscreteNoiseSchedule.

    Args:
       nsteps (int): number of discrete steps.
       direction (TimeDirection): required this defines in which direction the scheduler was built
    """
    self.nsteps = nsteps
    self.direction = string_to_enum(direction, TimeDirection)

calculate_derivative(nsteps=None, device='cpu', synchronize=None)

计算 schedule 的时间导数。

参数

名称 类型 描述 默认值
nsteps Optional[int]

时间步数。如果为 None,则使用初始化时的值。

None
device Optional[str]

放置 schedule 的设备(默认为 "cpu")。

'cpu'
synchronize Optional[str]

用于同步 schedule 的 TimeDirection。如果 schedule 是用不同的方向定义的,则此参数允许翻转方向以匹配指定的方向(默认为 None)。

None

返回值

名称 类型 描述
Tensor Tensor

表示 schedule 时间导数的张量。

Raises

类型 描述
NotImplementedError

如果未为此 schedule 实现导数计算。

源代码位于 bionemo/moco/schedules/noise/discrete_noise_schedules.py
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
def calculate_derivative(
    self,
    nsteps: Optional[int] = None,
    device: Union[str, torch.device] = "cpu",
    synchronize: Optional[TimeDirection] = None,
) -> Tensor:
    """Calculate the time derivative of the schedule.

    Args:
        nsteps (Optional[int]): Number of time steps. If None, uses the value from initialization.
        device (Optional[str]): Device to place the schedule on (default is "cpu").
        synchronize (Optional[str]): TimeDirection to synchronize the schedule with. If the schedule is defined with a different direction,
            this parameter allows to flip the direction to match the specified one (default is None).

    Returns:
        Tensor: A tensor representing the time derivative of the schedule.

    Raises:
        NotImplementedError: If the derivative calculation is not implemented for this schedule.
    """
    raise NotImplementedError("Derivative calculation is not implemented for this schedule.")

generate_schedule(nsteps=None, device='cpu', synchronize=None)

生成噪声 schedule 作为张量。

参数

名称 类型 描述 默认值
nsteps Optional[int]

时间步数。如果为 None,则使用初始化时的值。

None
device Optional[str]

放置 schedule 的设备(默认为 "cpu")。

'cpu'
synchronize Optional[str]

用于同步 schedule 的 TimeDirection。如果 schedule 是用不同的方向定义的,则此参数允许翻转方向以匹配指定的方向(默认为 None)。

None
源代码位于 bionemo/moco/schedules/noise/discrete_noise_schedules.py
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
def generate_schedule(
    self,
    nsteps: Optional[int] = None,
    device: Union[str, torch.device] = "cpu",
    synchronize: Optional[TimeDirection] = None,
) -> Tensor:
    """Generate the noise schedule as a tensor.

    Args:
        nsteps (Optional[int]): Number of time steps. If None, uses the value from initialization.
        device (Optional[str]): Device to place the schedule on (default is "cpu").
        synchronize (Optional[str]): TimeDirection to synchronize the schedule with. If the schedule is defined with a different direction,
            this parameter allows to flip the direction to match the specified one (default is None).
    """
    schedule = self._generate_schedule(nsteps, device)
    if synchronize and self.direction != string_to_enum(synchronize, TimeDirection):
        return torch.flip(schedule, dims=[0])
    else:
        return schedule