

# Aerial Omniverse Digital Twin (AODT) Platform

- New Featuers in Release 1.2

NVIDIA Telecom Product | Jan 30, 2024



# AODT Release 1.2

- GIS Import: Procedural indoor generation and Python pipeline
- Ul and UE Mobility: Indoor/Outdoor UE allocation, UE Mobility
- EM Solver: Outdoor-indoor and indoor-indoor
- RAN; 64T64R and MU-MIMO, Different target BLERs
- AI/ML Examples: PUSCH and SRS Channel Estimation

HW Configuration: Single GPU



# GIS Import: Indoor

Procedural generation of inter-floor and intra-floor mobility

- Fully Pythonic SDK with more user-friendly example scripts
- Procedurally generated indoor spaces with any GML or OSM import.
  - Highly configurable, includes reasonably realistic indoor spaces (reasonable area, wall height, doors, etc.) with interfloor accessibility, multiple floors where applicable.
- More tolerant mobility generation (disconnected components OK)
- Added Berlin sample map



## EM Solver

### Key features in 1.2 release

- Transmission model:
  - Ray paths penetrating buildings (experiencing additional transmission loss)
  - Outdoor-to-indoor coverage for UEs inside a building
  - Indoor UE mobility
- Enable/Disable Diffraction
  - Users can enable or disable diffraction in their simulations, allowing for more precise control over the simulations in terms of use cases and scenarios.



EM transmission across obstacles



## User Interface

Key features in 1.2 release

### New Features

- Added functionality for DB replay, copy and delete.
- Enabled selection of DB tables (e.g., CFRs, CIRs, ray paths, telemetry, training results).
- Introduced indoor visualization mode.
- Supported deployment of RUs on walls with appropriate azimuth alignment.
- Implemented a minimum intra-element distance limit based on roll angles for half-wave dipoles.
- Prevented edits before worker attachment to ensure edits are created and managed during live sessions.

### Tech Debt Reduction and Code Improvement

- Refactored attributes\_widget.py (4,071 lines) into base\_property\_widget.py (525 lines).
- Deduplicated antenna patterns in prims and messages and established antenna unit tests.

# **UE Mobility**

### Flexible configuration of the UE mobility

- Specify a UE mobility path by clicking on the Edit Waypoints button in the UE property widget.
  - Draw a polyline defining the intended trajectory of the UE across the map.
  - Customized Speed (in meters per second)
  - Customized Azimuth Angle Offset (in degrees)
  - Customized Pause Duration (in seconds)
- Percentage of Indoor Procedural UEs controls the percentage of procedurally generated UEs that are placed indoor.
  - The ratio of indoor to outdoor UEs can now be manually tuned to match actual distribution, e.g. 80% indoor to 20% outdoor.



| Waypoints Attributes |             |                    |                      |
|----------------------|-------------|--------------------|----------------------|
|                      | Speed [m/s] | Pause duration [s] | Azimuth offset [deg] |
| Waypoint 0           | 0.0         | 0.0                | 0.0                  |
| Waypoint 1           | 0.0         | 0.0                | 0.0                  |
| Waypoint 2           | 0.0         | 0.0                | 0.0                  |
| Waypoint 3           | 0.0         | 0.0                | 0.0                  |
| Waypoint 4           | 0.0         | 0.0                | 0.0                  |
| Waypoint 5           | 0.0         | 0.0                | 0.0                  |

# RAN Digital Twin MU-MIMO with 64TRx for better network efficiency

- Support 64 antennas at RU
  - The ability to support up to 64 antennas at the Radio Units (RUs) expands the scope and scale of RAN simulations.
- MU MIMO for DL and UL
  - Multi-User Multiple Input Multiple Output (MU-MIMO) in both downlink (DL) and uplink (UL) slots.



| Γ | <pre>-batch_id-</pre> | _slot_id_ | T—link— | T-ru_id- | _ue_id— | <sub>T</sub> —startPrb— | <sub> </sub> -nPrb- | T-mcs- | —layers— | r—tbs- | T-rv- | -outcome | SCS   | preEqSinr-          | _postEqSinr_ |  |
|---|-----------------------|-----------|---------|----------|---------|-------------------------|---------------------|--------|----------|--------|-------|----------|-------|---------------------|--------------|--|
| • | • •                   |           |         |          |         |                         |                     |        |          | •      |       |          |       |                     |              |  |
|   | 0                     | 29        | DL      | 2        | 1       | 220                     | 52                  | 10     | 3        | 4867   | 0     | 1        | 30000 | 9.182941            | 15.490848    |  |
|   | 0                     | 29        | DL      | 2        | 2       | 108                     | 56                  | 27     | 2        | 9987   | 0     | 1        | 30000 | 34.339355           | 37.904247    |  |
| Ч | 0                     | 29        | DL      | 2        | 3       | 108                     | <del>56</del>       | 27     | 2        | 9987   | 0     | 1        | 30000 | 34.548115           | 38.04521     |  |
|   | 0                     | 29        | DL      | 2        | 4       | 0                       | 108                 | 21     | 1        | 7172   | 2     | 1        | 30000 | 13.200821           | 27.504408    |  |
|   | 0                     | 29        | DL      | 2        | 5       | 164                     | 56                  | 4      | 2        | 1569   | 0     | 1        | 30000 | 9.53027             | 8.710031     |  |
| • | • •                   |           |         |          |         |                         |                     |        |          |        |       |          |       |                     |              |  |
|   | 0                     | 64        | UL      | 2        | 1       | 228                     | 44                  | 5      | 4        | 3138   | 0     | 1        | 30000 | 6.5925293           | 7.3060503    |  |
|   | 0                     | 64        | UL      | 2        | 2       | 184                     | 44                  | 27     | 1        | 3905   | 0     | 1        | 30000 | 37.077072           | 39.6355      |  |
| Ц | 0                     | 64        | UL      | 2        | 3       | 184                     | 44                  | 27     | 1        | 3905   | 0     | 1        | 30000 | <del>37.04961</del> | 39.45168     |  |
| j | 0                     | 64        | UL      | 2        | 4       | 0                       | 92                  | 23     | 1        | 6913   | 2     | 1        | 30000 | 13.37422            | 25.350723    |  |
|   | 0                     | 64        | UL      | 2        | 5       | 92                      | 92                  | 8      | 2        | 4737   | 2     | 1        | 30000 | 9.552433            | 11.236434    |  |

• • •

# Different Target BLERs

Foundation for Multiple QoS flows

- Different target Block Error Rates (BLERs) can be set for different UEs.
  - The BLERs are used to guide adaptive modulation and coding schemes. This provides more granular control over RAN simulations, allowing for diverse and tailored performance analyses.
  - This is fundamental for multiple QoS flows with different QoS flows and allow to set some UE to 10% BLER, while others to 1%



# AI/ML Support

### Accelerating Adv. 5G/6G Research and Development

- This release provides examples for the following Al-driven features
  - PUSCH Channel Estimation Inference:
    - Demodulation Reference Signal (DMRS) channel estimation inference demonstrates the integration of AI with AODT RAN simulation
  - SRS Channel Estimation Inference:
    - Sounding Reference Signal (SRS) channel estimation inference demonstrates the integration of AI with AODT RAN simulation
- Example workflow for the ML PUSCH Channel Estimation:
  - Step 1 Generate the models
    - To generate the channel estimator models, use the PyAerial Channel Estimation notebook in aodt\_sim/external/cuBB/pyaerial/notebooks/channel\_estimation
    - This produces a different model for each one of the SNRs and PRB points
  - Step 2 Make the models accessible to AODT
    - Once the models have been generated, they need to be exposed to aodt\_sim.
       Configuration and data file access needs to be set properly
    - The channel estimation module will combine the models with different SNRs and PRBs to match the PRB allocation from the scheduler
  - Step 3 Configure the RAN simulation to enable the RAN simulation to show enhanced performance



PUSCH AI-based DMRS Channel Estimation



# **AODT Hardware: Single GPU Support in Release 1.2**

Single/Double GPU On-Prem, Public Cloud, NVCF

### Rel 1.2 (Jan/Feb 25)

### On Prem (Collocated) Jan 25

- Single-GPU, Ubuntu 22.04
- Double-GPUs, Front/Backend @ Window/Ubuntu 22.04
- Enterprise grade
  - Single or 2xRTX6000 Ada/48 GB
  - Ubuntu 22.04;
  - Qualified workstation: Dell 7960 with 2xRTX6000Ada; Dell760 with 2xL40
  - Target industrial and large-scale network simulation, fine-tuning and deployment

### **Public Cloud Jan 25**

- Azure
  - Frontend
    - 12 GB+; GTX/RTX
    - RTX6000Ada, A10, L40
    - Window Server 2022
  - Backend
  - 48 GB+; GTX/RTX
  - RTX6000Ada, A100, H100, L40
  - Ubuntu 22.04

### AODT-on-Cloud (NVCF) - Feb 25

- AODT running environment
- Synthetic data generation



